
Abstract. The three-dimensional (3D) potential energy
surface of the ground state of Li3 was determined by the
multireference con®guration interaction method. The
vibrational motions and pseudorotation were investi-
gated by a 3D time-dependent wavepacket formalism.
The analytical expression of the 3D surface is given and
the results of vibrational analyses at several critical
points are presented. The low-lying excited states of Li3
were examined for the C2v structure and the vertical and
adiabatic excitation energies were calculated. The
ground and singlet excited states of Li2 were calculated
and their spectroscopic constants compare well with the
experimental values. A 3D wavepacket calculation was
performed for simulations of the stimulated emission
pumping spectrum in which the A state was taken as an
intermediate. The recurrences of the autocorrelation
functions were characterized by classical trajectory
calculations. The autocorrelation functions obtained by
wavepacket propagation are reproduced well by the
accumulation of the classical trajectories in the short-
time region.
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1 Introduction

Alkali trimers provide information on fundamental
aspects of molecular spectroscopy such as pseudorota-
tions and vibronic interactions. In such systems, there
are some characteristic geometries, such as three-fold
symmetric wells (C2v obtuse), pseudorotation barriers
(C2v acute), and a D3h Jahn-Teller crossing, which make
the potential energy surface (PES) strongly anharmonic.

Delacretaz et al [1] have assigned the B state of Na3 to
22E¢ and interpreted their spectrum in terms of a Jahn-

Teller model. Ab initio calculations by Cocchini et al. [2]
later predicted an additional, nondegenerate electronic
state of 2A01 symmetry lying closely under the 2E¢ state.
Subsequently, Meiswinkel and KoÈ ppel [3] explained
theoretically the spectrum based on a pseudo Jahn-Teller
model. A congested stimulated emission pumping (SEP)
spectrum was observed on a chaotic background for Na3
by Broyer et al [4] and the vibrational motion in the
chaotic region was then investigated theoretically and
assigned based on unstable periodic orbits [5, 6]. Re-
cently, continuous wave two-photon ionization and fs
pump-probe spectroscopy [7, 8] have yielded preferential
excitations of the pseudorotations and the symmetric
stretch in Na3(B), respectively. The experimental results
have been veri®ed theoretically by using time-dependent
wavepacket calculations [9±11].

The PES of Li3 also has the characteristics seen for
other alkali trimers, and the pseudorotation barrier is
even lower than that of Na3. The lowest adiabatic sur-
face and the vibronic states of Li3 were studied by Ge-
rber and Schumacher [12] using the coupled electron pair
approximation (CEPA). Martins et al [13] also calcu-
lated the lowest adiabatic surface by the pseudopotential
and the local-spin-density approximation and Thomp-
son et al ®tted the surface with a well-designed analytical
function [14]. Although Beckmann [15] calculated the
vertical excitation energies for eight low-lying excited
states of Li3 by MRD-CI and the excitation to the 22E¢
state of Li3 was ®rst observed experimentally by Wolf
et al [16], little is known about the excited states of Li3.

In our study, the ground and excited electronic states
of Li3 and the vibrational motion and pseudorotation in
the ground state were investigated. The three-dimen-
sional (3D) PESs of the ®rst and second adiabatic states
were calculated by the multireference CI (MRCI)
method with the state-averaged complete-active-space
self-consistent ®eld (CASSCF) reference. The lower PES
was ®tted by a consistent analytical function [14]. Twelve
low-lying electronic states of Li3 were investigated for
the C2v structure and the stable geometries were deter-
mined. The molecular dynamics were investigated by a
3D time-dependent wavepacket formalism to simulate
a stimulated emission pumping (SEP) spectrum. The
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autocorrelation functions were calculated to ®nd the
recurrences and the origin of the recurrences was char-
acterized by classical mechanics.

2 Calculational details

We calculated the ground and low-lying excited states
of Li2 and Li3 by the MRCI method with the CASSCF
[17] reference. All calculations were performed by the
MOLPRO suite of ab initio programs [18].

The 3D PESs of the ground and ®rst excited states of
Li3 conically intersect in a D3h structure. The CASSCF
calculations were performed by distributing three elec-
trons into twelve orbitals, which correspond to all the Li
2s and 2p valence orbitals. In the MRCI, nine a¢ and
three a¢¢ MOs were adopted as active orbitals, and all
single and double excitations into the external orbitals
relative to the full CASSCF reference were taken into
account. The correlation-consistent basis set of Dun-
ning, VTZP(spdf)[4s3p2d1f] [19], was used for Li. Cal-
culations were performed in the point group Cs and this
yielded 321 and 41,172 con®guration state functions in
the CASSCF and MRCI calculations, respectively, for
A¢ symmetry.

The ground and 11 low-lying valence excited states
were also investigated by the CASSCF/MRCI method in
the C2v structure and the 2D PESs were obtained. All 12
electronic states were averaged with equal weight in the
CASSCF calculations. The VTZP(spd) [4s3p2d] set [19]
was adopted for Li. Resulting CSFs were about 160
and 11,000 for the CASSCF and MRCI calculations,
respectively, for each irreducible symmetry. The 2D
PESs for ®ve 2A1, four

2B1, two
2B2, and one 2A2 states

were calculated.
The ground and low-lying singlet excited states of Li2

were also calculated for the ®tting of the two-body terms
of the Li3 analytical potential function. The MRCI
calculations were performed with the VDZP [3s2p1d],
VTZP(spd) [4s3p2d], and VTZP(spdf) [4s3p2d1f] basis
sets of Dunning [19].

We need to review the coordinate systems used in this
work. Di�erent coordinates are used for di�erent pur-
poses. The D3h symmetry coordinates (qs, qx, qy), that is,
the normal coordinates of D3h, are de®ned in relation to
the Cartesian coordinates (xi; yi; zi) of the three atoms by
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It is possible to describe any structure of the trimer
molecule with these coordinates [12±14]. The relation-
ships between these D3h coordinates and the internuclear
distances (r12, r23, r31) are given by
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Then, the hyperspherical coordinates (q, s, /) are de®ned
as
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Note that the scales of our coordinates are exactly the
same as those of Gerber and Schumacher [12], but di�er
from those of Thompson et al [14] by a factor of 1��

3
p for

qs, qx, qy, and q.
The lowest 3D PES is ®tted with the analytical

function expanded in hyperspherical coordinates. The
functional form adopted for the 3D PES is
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where V �rij� is a two-body term expanded by the
extended Rydberg function,
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and the three-body terms are given by [14]
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The upper sign in Eq. 12 is for the lower surface and the
lower sign is for the upper surface. This functional form,
in which the three-body terms are from Thompson et al
[14], gives the correct analytical behavior even in the
vicinity of the D3h conical intersection, D1h collinear
geometry, and the Li+Li2 asymptotic region. Moreover,
the analytical continuation from the lower surface to the
upper one is satis®ed automatically.

A vibrational analysis was performed at some critical
points using the ®tted PES by the Wilson FG analysis
[20]. The F matrix was constructed by numerical di�er-
entiation of the analytical gradient.

The wavepacket calculations were performed by
solving the time-dependent SchroÈ dinger equation. The
propagation in time was performed by the Chebychev
expansion method [21] combined with the Newtonian
interpolation technique [22]. The perimetric coordinates
[23, 24] were used in our wavepacket calculation. These
coordinates allow the Fourier method to be used for all
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three modes. Transformation between coordinate and
momentum space was performed by the 3D FFT
method. The perimetric coordinates (z1, z2, z3) are de-
®ned in relation to the three bond lengths (r1, r2, r3) by

zi � ÿri � rj � rk
ÿ �
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ÿ ��

2 : �14�
For an X3 system, that is, in which all the atoms are the
same, the kinetic part of the Hamiltonian [22±24] is
simply given by
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in the perimetric coordinates where
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l being the mass of the nucleus and bij given by
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The Jacobian of the perimetric coordinates is given by

1

8
z1 � z2� � z2 � z3� � z3 � z1� � : �20�

Classical trajectory calculations were performed to
characterize the recurrences in the autocorrelation func-
tions. The internal coordinates (r1, r2, h) were adopted
for solving Newton's equations and the Hamiltonian
of the system was taken from the literature [25±27].

3 Potential energy surfaces

3.1 Potential energy curves of Li2

The potential curves of Li2 were calculated for the
ground state, X 1R�g , and the low-lying singlet excit-
ed states, A1R�u ,

1Pg,
1Pu, and 21R�g , which dissociate to

2S + 2P in the atomic limit. Thirty-®ve points, calcu-
lated at an internuclear distance of 1.0±40.0 a.u., were
®tted by an extended Rydberg function of order
N � 20, and the spectroscopic constants were estimated
by the Dunham method [28, 29]. The potential energy
curves are depicted in Fig. 1 and the calculated spectro-
scopic constants are summarized in Table 1 together
with the experimental values [30±32].

If we examine the results for the ground state, we see
that for these MRCI calculations with state-speci®c
CASSCF reference, as the quality of the basis set in-
creases from VDZP, VTZP(spd), to VTZP(spdf), more
accurate dissociation energies are obtained. The agree-
ment between the VTZP (spdf) and experimental data is

so good that we used these MRCI data for the ®tting of
the two-body terms in the Li3 potential.

The potential curves of the excited states were also
calculated with the VTZP(spdf) basis set. Two types of
CASSCF reference were examined; one was optimized
by a state-averaged CASSCF for the ®ve states and the
other was optimized by a state-speci®c CASSCF. Since
experimental results, where they exist, are not always
consistent, it is not possible to say whether one or the
other optimization method is better. For example the
De of the A1R�u state was calculated as 9178.4 cm)1 and
9334.9 cm)1 with the state-averaged and state-speci®c
optimizations respectively, while experimental values are
9469 cm)1 [31] and 8940 cm)1 [32]. Previous MCSCF
work of Konowalow and Olson [33] predicted De to be
9299 cm)1. For the 1Pu state, the state-speci®c Re and xe

values are in better agreement with the experimental
values [30] than the state-averaged data. The 1Pu and
21R�g states have a hump in their potential curves.
For the 1Pu state we calculated the inter nuclear sepa-
ration at the hump and the potential barrier relative to
the dissociation limit at 5.72 AÊ and 575 cm)1.

3.2 Excited states of Li3

Twelve low-lying electronic states of Li3 were investi-
gated for a C2v structure. The CASSCF/MRCI potential
energy curves of these states at qs � 3.2 a.u. and
qy � 0.0 a.u. are depicted in Fig. 2. The equilibrium
geometry, vertical and adiabatic excitation energies, and
correspondence between the D3h and C2v representations
are summarized in Table 2. The equilibrium geometry
values (bond length and bond angle) were determined
under the C2v symmetry restriction and the MRCI

Fig. 1. Potential energy curves of the ground and low-lying singlet
excited states of Li2
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calculations were performed at qs � 2.8±4.0 a.u. and
qx � ÿ1:2±0:6 a.u. with an interval of 0.1 a.u. The
shapes of the calculated potential energy curves di�er
between the MRCI and CASSCF calculations, especially
for the 22A1 state. The 4

2E¢ and 22E¢¢ states lie above the
12 low-lying states and may be important as intermedi-
ate states for SEP experiments.

So far, only the vertical excitations of Li3 have been
investigated, by an MRD-CI calculation [15]. The or-
dering of the vertical excitations found here is identical
to that in Ref. 15 up to the 32B2 state, although the 42A1

state is missing. Our values for the vertical excitation
energies are almost the same as the estimated full-CI

values of Ref. [15]. In another study, a vibrational pro-
gression was observed at 1.81 eV above the ground state
and identi®ed as the 22E¢ state [16]. Here, we ®nd the
22E¢ and 12E¢¢ states around this energy region, with
DE � 1.3 and 1.8 eV, respectively.

The electronic structure of Li3 is analogous to that of
Na3, and therefore, the ordering of the excited states and
the shapes of the PESs can be assumed to be similar. A
generalized valence-bond/MRCI study by Cocchini et al
was reported for the 2D PESs of the Na3 excited states
[2] Our excitation energies of Li3 are larger than those of
Na3. A remarkable di�erence between our PESs for Li3
and those found for Na3 is the interaction of the 12A1¢
and 22E¢ states. The degenerate pair of the 22E¢ state
consists of the 22B2 and 32A1 states for Li3 and the 22B2

and 22A1 states for Na3 [2]. This pair and the 32E¢ state
do not show a conical intersection. The double minima
of the 22A1 state of Li3 are quite shallow at qs � 3:2 a.u.
The cross-sections of other excited states of Li3 obtained
in the present study show behavior similar to those of
Na3, and therefore, the equilibrium geometry values of
the excited states show similar trends. The 12B1, 1

2A1,
and 52A1 states are stable for an equilateral triangle
geometry, while the equilibrium geometry of the other
states is an isosceles triangle. The 42B2 state is disso-
ciative, the same as for Na3. The optimized qs of the
12A2¢¢ state is small, 3.0 a.u., which shows that the
molecul shrinks in comparison with the ground state.

3.3 3D PES of Li3 and ®tting

The two lowest adiabatic 3D PESs of Li3 were calculated
by the state-averaged CASSCF/MRCI method with
a VTZP(spdf) basis set. Figure 3 displays the cross-
sections of the lower surface at (a) qs � 3:2 a.u. and
(b) qx � 0:0 a.u. The 3D plots of the lower and upper
surfaces at qs � 3:2 a.u. are depicted in Fig. 4. These
adiabatic surfaces correlate with the 12A1 and 12B2 states
in C2v and the degenerate 12E¢ state in D3h. The

Table 1. CASSCF/MRCI Spectroscopic constants of Li2

State Basis set Referencea Re De xe xeve Be ae
[AÊ ] [cm)1] [cm)1] [cm)1] [cm)1] [cm)1]

X1R�g VDZP S-s 2.697 7922.3 340.0 2.48 0.662 0.006
VTZP(spd) S-s 2.685 8318.5 344.9 2.45 0.668 0.007
VTZP(spdf) S-s 2.667 8530.4 345.1 2.27 0.677 0.007

Exptl. 2.673b 8541b 351.4b 2.58b 0.672c 0.007c

A1R�u VTZP(spdf) S-a 3.143 9178.4 252.1 1.51 0.487 0.005
VTZP(spdf) S-s 3.103 9334.9 253.1 1.91 0.500 0.007

Exptl. 3.108b 8940b 255.4b 1.58b 0.498c 0.005c

9469d

11Pg VTZP(spdf) S-a 4.093 1347.1 93.5 1.80 0.288 0.009
VTZP(spdf) S-s 4.042 1416.4 94.5 1.41 0.295 0.009

11Pu VTZP(spdf) S-a 2.968 2626.9 269.1 3.10 0.547 0.008
VTZP(spdf) S-s 2.935 2754.1 268.4 2.56 0.559 0.008

Exptl. 2.935c ... 270.1c 2.67c 0.558c 0.009c

21R�g VTZP(spdf) S-a 3.638 3236.7 145.6 1.47 0.364 0.005

a ``S-s'' and ``S-a'' denote the state-speci®c and state-averaged CASSCF references, respectively
bRef. [32]
cRef. [30]
dRef. [31]

Fig. 2. Potential energy curves of the ground and low-lying excited
states of Li3 for qs � 3:2 a.u. and qy � 0:0 a.u

229



calculated lower surface represents the characteristics of
the PESs of the alkali trimer: the shallow three-fold wells
(C2v obtuse), barriers to pseudorotation (C2v acute), and
conical intersection (D3h), which are shown in Fig. 3a
and Fig. 4. The potential seam is clearly found at qy � 0
in Fig. 3b.

Table 3 summarizes the total energy, interaction en-
ergy, and relative energy of the critical points with their
geometries. From this data we see that the C2v obtuse
con®guration is the lowest in energy, followed by C2v
acute, D3h, and D1h. These energies were then compared
to the total energy of the Li+Li2 asymptotic structure,
calculated at )22.335836 a.u. to derive the interaction
energies, in the third column of Table 3.

We next derived the harmonic frequencies using the
®tted PES (even though the harmonic approximation is
not quantitatively valid for an X3-type system [34])
shown at the right in Table 3. Note that the C2v acute
geometry has an imaginary frequency of 210 cm)1 for
the asymmetric stretch and the energy gradient does not
vanish at the D1h collinear structure.

The lower surface was ®tted by the self consistent
analytical function of Eq. 10. Expansion coe�cients of
the two- and three-body terms were determined by a
least squares ®t with equal weighing for all the points
and variation of the nonlinear terms. The qD and q
values were determined as 3.2330 and 4.4662 a.u., re-
spectively, according to the optimized C2v obtuse and
D1h collinear structures. Optimized expansion coe�-
cients of the two-body terms, ai, and three-body terms
[14], BiJk, CiJk, and DiJk, are listed in Table 4. Here the
indices i, j, and k represent the exponents of q, s, and /,
respectively, as in Eqs. 12 and 13, and J gives the total
exponent s, namely, J � 2j + 3k for B-type and D-type
terms and J � 2j + k + 1 for a C-type term [14]. The
root mean square (rms) errors of the ®tting are sum-
marized in Table 5 for those energy thresholds which
determined the energy data to be ®tted.

For the two-body terms, the ®tting was performed
with 31 points from 1.5 to 40.0 a.u. for the Li2 ground
state calculated by the CASSCF/MRCI method using
the VTZP(spdf) basis set. The rms error for the ®tting of

Table 2. Parameters of excited states of Li3 calculated by the CASSCF/MRCI method with VTZP(spd)

State Equilibrium geometrya Excitation energy [eV]

D3h C2v Bond Bond qs qx Vertical Adiabatic
length [AÊ ]b angle [deg] [au] [au]

12E0c 12B2 2.79 71.8 3.21 )0.362 ... ...
12A1 3.06 52.0 3.19 0.269 0.26 0.01

12A002 12B1 2.75 60 3.0 0.0 0.67 0.56

12A
0
1 22A1 3.22 49 3.3 0.4 1.11 1.09

22E0 22B2 3.03 66 3.4 )0.2 1.34 1.28
32A1 3.12 60 3.4 0.0 1.50 1.29

12E00 12A2 2.88 79 3.4 )0.6 1.82 1.80
22B1 3.22 49 3.3 0.4 2.13 1.82

22A01 42A1 3.61 45 3.6 0.6 2.15 2.01

32E0 32B2 3.26 68 3.7 )0.3 2.38 2.26
52A1 3.3 60 3.6 0.0 2.55 2.27

12A02 42B2 Dissociative 2.61 2.44

a Equilibrium geometry is determined under the C2v symmetry restriction
bBond length of the equal sides of the isosceles triangle
c The lowest two adiabatic states are optimized with VTZP(spdf)

Fig. 3a,b. Cross-sections of the
lower adiabatic surface of Li3
at a qs � 3:2 a.u. and b
qy � 0:0 a.u. Energies are given
relative to the C2v obtuse
geometry in cm)1
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the two-body terms is 2.47 cm)1. The total energy of the
three Li atoms, 3Eatom � )22.2981117 a.u., was deter-
mined for the equilateral triangle geometry of Li3 at
R � 20.0 a.u.

An analytical ®t of the 3D PES was performed only
for the lower adiabatic surface. The CASSCF/MRCI
calculations were performed at the four representative
geometries: (a) 527 points in the neighborhood of
the equilateral triangles, qs � 2.85±4.45 a.u., qx �
)1.4±0.7 a.u., and qy � 0.0±1.0 a.u.; (b) 153 points in
the Li+Li2 asymptotic region, r1 � r2 � 7.0±30.0 a.u.,
r3 � 4.5±6.5 a.u. and r1 � 5.0, r2 � 7.0±30.0 a.u.,
h � 50°±180°; (c) 22 points for the D¥h collinear
geometry, r1 � r2 � 4.5±6.5 a.u.; (d) 72 points
around the conical intersection, qs � 2.8±4.4 a.u.,
q2x � q2

y � 0:152. Final parameters were determined with
those 680 points (out of 774), whose total energy was less
than )22.335 a.u.

The analytical continuation of the ®tted function to
the upper surface was examined. The total energies of

the upper surface calculated by the MRCI method were
compared to those estimated by the ®tted PES around
the D3h conical intersection. The rms errors of the de-
viation from the MRCI calculation are summarized in
Table 5. Though the data of the upper surface were not
included in the least squares ®t, the rms error is as small
as 45.2 cm)1 for the energy data up to )22.340 a.u.
This shows that the present ®tted PES satis®es the
analytical continuation around the D3h conical inter-
section region.

4 3D wavepacket dynamics

The vibrational motion and the pseudorotation of Li3
were investigated by the time-dependent wavepacket
formalism using the 3D PES described in Sect. 3.3.
Vibronic coupling was not considered and the wave-
packets were propagated in the lower surface. Perimetric
coordinates were used in the wavepacket calculations,
while the analysis was undertaken in D3h symmetry
coordinates to better visualize the nuclear motion. The
32 grid points from 1.0 a.u. to 11.85 a.u. with a grid
spacing of 0.35 a.u. were adopted for each direction of
the perimetric coordinates. The density of the wave-
packet was analyzed by projecting it onto the qxqy plane.

First, the vibrational ground state of Li3 was calcu-
lated by an arbitrary wave function being propagated in
imaginary time. The density of the converged wave
function projected onto the qxqy plane is shown in Fig. 5.
The density is delocalized over the three-fold wells of the
C2v obtuse structure, since the barriers of the pseudo-
rotation are low, about 70 cm)1. However, it still re¯ects
the shape of the PES. The vibronic ground state of Li3
calculated by Gerber and Schumacher [12] also shows
this delocalization.

Real time wavepacket propagations were performed
for simulation of a SEP experiment and the autocorre-
lation functions were calculated to ®nd the recurrences.
In the SEP spectrum of Na3 [4], the electronically excited
C state was taken as an intermediate state (the 22E¢¢ state
in D3h). Because the PESs of the A (12E) and C states
resemble each other in the C2v cut of Na3

2), it is of in-
terest to perform simulations based on the A state. Since
the 3D PES of the A state was not calculated, we
adopted a 3D distribution of the initial wavepacket
similar to that of the vibrational ground state of the
adiabatic electronic ground state. One of the three-fold
minima of the A state was calculated as (3.4, )0.6, 0.0) in

Fig. 4. Three-dimensional plots of the lower and upper surfaces of
Li3 at qs � 3:2 a.u.

Table 3. Energy, equilibrium geometry, and frequency at the critical points of the lowest surface for Li3 calculated by the CASSCF/MRCI
method with VTZP(spdf)

Structure Total
energy [au]

Interaction
energy [kcal/mol]

Relative
energy [cm)1]

Equilibrium geometry Frequency [cm)1]a

R1 = R2 [a.u.] R3 [a.u.] Angle
[deg]

ss as b

C2v obtuse )22.357 736 13.73 0 5.28 6.19 71.8 325 175 186
C2v acute )22.357 401 13.52 74 5.78 5.07 52.0 337 210i 246
D3h )22.355 430 12.28 506 5.47 10.94 180.0 ... ... ...
D¥h )22.346 693 5.55 2423 5.48 5.48 60.0 ... ... ...

a ss: symmetric stretch; as: asymmetric stretch; b: bend
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the (qs, qx, qy) representation, which is di�erent from the
ground state (3.21, )0.36, 0.0). Three cases of initial
conditions which re¯ect the stable geometry of the A
state were examined. In case 1, the pseudorotation bar-
riers of the A state were low, as in the ground state;
therefore, a three-centered 3D-gaussian wavepacket
whose centers were at (3.4, )0.6, 0.0) and (3.4, 0.3,
�0:6= ���

3
p

) was adopted to represent the delocalized wave
function. This condition is di�erent from the situation in
Na3 dynamics [7]. The autocorrelation function calcu-
lated for case 1 is shown in Fig. 6a and the projected
density of the wavepacket during the propagation is
shown in Fig. 7. In case 2 (Fig. 6b), to enable direct
comparisons a one-center 3D-gaussian was adopted for
the initial condition, as was done for Na3 [7]. In case 3
(Fig. 6c), a three-centered 3D-gaussian with centers at
(3.21, )0.8, 0.0) and (3.21, 0.4, �0:8= ���

3
p

) was used to
represent the distorted molecular structure. The energy
expectation value hEi for cases 1 and 2 is 610 cm)1 and
that for case 3 is 920 cm)1.

The recurrences of the autocorrelation function for
case 1 are simple and large, while those for case 2 are
rather complex, as seen in Fig. 6. The ®ne structure of
the recurrences is obvious in case 2. In both cases, the
recurrences occur at time T � 8,000, �15,000, �23,000,
and �33,000 a.u. The relationship between these recur-
rences and the motions of the wavepacket is clearly
shown by projecting the density of the wavepacket onto
the qxqy plane. Figure 7 displays the time-evolution of
wavepacket density for the ®rst recurrence of case 1. The
wavepacket moves to the D3h region at T � 4000 a.u.

and then comes back to the initial position. The auto-
correlation function of case 3 (Fig. 6c) becomes more
complex, though the recurrence times are almost the

Table 5. Root mean square (rms) errors and numbers of ®tted and examined points

Lower surface Upper surface

Energy threshold
[a.u.]

Number of
®tted points

rms error
[cm)1]

Energy threshold
[a.u.]

Number of
examined points

rms error
[cm±1]

Fit 1 )22.335 680 8.26 )22.340 134 45.2
)22.345 102 26.3
)22.350 36 16.6

Fit 2 )22.336 581 3.79
Fit 3 )22.340 475 2.34

Fig. 5. Density of the vibrational ground state of Li3 projected
onto the qxqy plane

Fig. 6a±c. Autocorrelation functions calculated by 3D wavepacket
propagation. Initial wavepackets are 3D-gaussian centered at a case
1 (qs; qx; qy) � (3.4, )0.6, 0.0) and (3.4, 0.3, �0:6= ���

3
p

), b case 2
(qs; qx; qy) � (3.4, )0.6, 0.0), and c case 3 (qs, qx, qy) � (3.21, )0.8,
0.0) and (3.21, 0.4, �0:8= ���

3
p

). The assignments of peaks A, B, C, D
will be discussed in conjunction with Fig. 8
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same as in the preceding two cases. The recurrences in
the autocorrelation functions of Li3 are large in com-
parison with those of Na3 [4,5]. This is because the
pseudorotation is essential in Li3 and the barriers are
very low.

5 Classical trajectory analysis

Next, classical trajectory calculations were performed to
characterize the recurrences of the autocorrelation
functions. Some representative trajectories taken for
the autocorrelation function data of case 2 (Fig. 6b) are
shown in Fig. 8, projected onto the qxqy plane. Recur-
rence A (Fig. 6b) is assigned to the motion of the
trajectories that are localized in the single well of the C2v

obtuse geometry (Fig. 8a). The trajectories shown in
Fig. 8b, which represent the pseudorotation of Li3, are
attributed to recurrence B (Fig. 6b) with the second
recurrence of the trajectory type seen in (Fig. 8a).
Recurrence C of Fig. 6b includes the motion shown in
Fig. 8c, which goes around the D3h conical intersection,
and also that in Fig. 8d. Various trajectories such as
those in Fig. 8e are attributed to the fourth recurrence D
in Fig. 6b. If the initial wavepacket delocalizes over all
the three-fold wells as in case 1, all of these trajectories
contribute to all the recurrences. This is the reason for
the large recurrences of the case 1 wavepacket dynamics.

Finally, the autocorrelation functions were simulated
using a classical trajectory approach. The wavepacket
dynamics were described by the sum of the classical
trajectories. The initial 3D-gaussian of the wavepacket
was described by 9,310 points for which the weight of the
gaussian distribution and the autocorrelation is calcu-
lated by the overlap between the initial 3D-gaussian and
the gaussian function on the trajectory points. The
conditions of cases 1 and 2 were imposed. The auto-
correlation functions thus calculated by the sum of the
trajectories are depicted in Fig. 9. The relative intensity

and the interval of the recurrence are well simulated for
early recurrences. The deviation in the long-time region
may be due to the fact that the discretization of the
phase space by the present trajectory points is not ade-
quate and the spread of the phase space of each trajec-
tory is not included.

6 Summary

The ground and excited electronic states of Li3 and the
vibrational motion and pseudorotation in the ground
state have been investigated. The 3D PES of the
adiabatic ground state was calculated by the CASSCF/
MRCI method and ®tted by a consistent analytical
function. The 12 low-lying electronic states of Li3 were
investigated in the C2v structure and the vertical and
adiabatic excitation energies were calculated.

The 3D wavepacket dynamics formalism was used for
simulations of a SEP experiment in which the A state
was taken as an intermediate. The recurrences in the
autocorrelation function of Li3 were large in comparison
to those of Na3 due to the low barriers to pseudorota-
tion. The recurrences in the autocorrelation functions
were characterized by classical trajectory calculations
and the accumulation of the trajectories simulated well
the quantum-mechanical autocorrelation function in the
short-time region. Each regular motion inserted into a
chaotic trajectory is itself a short-lived species, which
exhibits an important feature of dynamics at transition
state regions.
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